Stationary harmonic functions on homogeneous spaces
نویسندگان
چکیده
منابع مشابه
Harmonic Analysis on Homogeneous Spaces
This article is an expository paper. We first survey developments over the past three decades in the theory of harmonic analysis on reductive symmetric spaces. Next we deal with the particular homogeneous space of non-reductive type, the so called Siegel-Jacobi space that is important arithmetically and geometrically. We present some new results on the Siegel-Jacobi space.
متن کاملHarmonic Spinors on Homogeneous Spaces
Let G be a compact, semi-simple Lie group and H a maximal rank reductive subgroup. The irreducible representations of G can be constructed as spaces of harmonic spinors with respect to a Dirac operator on the homogeneous space G/H twisted by bundles associated to the irreducible, possibly projective, representations of H. Here, we give a quick proof of this result, computing the index and kerne...
متن کاملHarmonic Bergman Functions on Half-spaces
We study harmonic Bergman functions on the upper half-space of Rn. Among our main results are: The Bergman projection is bounded for the range 1 < p <∞; certain nonorthogonal projections are bounded for the range 1 ≤ p < ∞; the dual space of the Bergman L1-space is the harmonic Bloch space modulo constants; harmonic conjugation is bounded on the Bergman spaces for the range 1 ≤ p <∞; the Bergma...
متن کاملSome remarks on harmonic functions on homogeneous graphs
We obtain a new result concerning harmonic functions on Cayley graphs X: either every nonconstant harmonic function has large radial variation (in a certain sense), or there is a nontrivial hyperbolic boundary at infinity of X. In the latter case, relying on a theorem of Woess, it follows that the Dirichlet problem is solvable with respect to this boundary. Certain relations to group cohomology...
متن کاملSome remarks concerning harmonic functions on homogeneous graphs
We obtain a new result concerning harmonic functions on infinite Cayley graphs X : either every nonconstant harmonic function has infinite radial variation in a certain uniform sense, or there is a nontrivial boundary with hyperbolic properties at infinity of X . In the latter case, relying on a theorem of Woess, it follows that the Dirichlet problem is solvable with respect to this boundary. C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ufa Mathematical Journal
سال: 2015
ISSN: 2074-1863,2074-1871
DOI: 10.13108/2015-7-4-149